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SYNOPSIS 

This work introduces a new numerical algorithm that can be used to analyze complex 
problems of penetrant transport. Penetrant transport in polymers often deviates from the 
predictions of Fick's law because of the coupling between penetrant diffusion and the polymer 
mechanical behavior. This phenomenon is particularly important in glassy polymers. This 
leads to a model consisting of two coupled differential equations for penetrant diffusion 
and polymer stress relaxation, respectively. If the polymer relaxation is the rate-limiting 
step, both the concentration and stress profiles are very steep. A new algorithm based on 
a finite difference method is proposed to solve the model equations. It features the devel- 
opment of a tridiagonal iterative method to solve the nonlinear finite difference equations 
obtained from the finite difference approximation of the differential equations. This method 
was found to be efficient and accurate. Numerical simulation of penetrant diffusion in 
glassy polymers was performed, showing that the integral sorption Deborah number is a 
major parameter affecting the transition from Fickian to anomalous diffusion behavior. 
0 1993 John Wiley & Sons, Inc. 

INTRODUCTION 

Diffusion of small penetrant molecules in polymeric 
materials is of technological importance in a variety 
of applications (e.g., barrier materials, controlled 
release, microelectronics, and environmental effect 
on engineering polymeric materials). Research in 
this field has been quite active in the last decade. It 
has been observed that penetrant diffusion at a tem- 
perature above the polymer's glass transition tem- 
perature usually agrees with the predictions of Fick's 
law. However, when the polymer is in its glassy state, 
penetrant diffusion often deviates from Fick's law, 
leading to anomalous or non-Fickian behavior. The 
deviation from Fickian behavior has been associated 
with the finite rate at which the polymer structure 
rearranges to accommodate penetrant molecules and 
has been observed for many polymer-penetrant 
systems.'-3 

An important milestone in the study of anoma- 
lous diffusional behavior was the recognition by Al- 
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frey et al.4 of the two extremes of diffusional behavior 
according to the relative rates of penetrant mobility 
and polymer relaxation. In Case I (Fickian) diffu- 
sion, penetrant mobility is much slower than the 
segmental relaxation rate. In Case I1 diffusion, pen- 
etrant mobility is much higher than the segmental 
relaxation rate and the relaxation at a sharp bound- 
ary between swollen and essentially unplasticized 
polymer becomes the rate-determining step. Anom- 
alous diffusion is a process with intermediate char- 
acteristics. Hopfenberg and Frisch' noticed that the 
type of diffusional behavior observed for any poly- 
mer-penetrant system varies with temperature and 
penetrant activity. Vrentas and  collaborator^^'^ in- 
troduced the diffusional Deborah number as a means 
of characterizing diffusion in amorphous polymer- 
penetrant systems. 

Many efforts have been made to develop math- 
ematical models for Case I1 diffusion. For instance, 
the diffusion coefficient was considered a function 
of local concentration and stresses?' A convective 
term was introduced that is governed by either local 
penetrant concentration lo or the local stress, which 
is assumed to be equal to the osmotic pressure in- 
duced by the penetrant." 

1845 
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Thomas and Windle 12-14 developed a rather suc- 
cessful Case I1 diffusion model (henceforth referred 
to as the TW model). According to this model, the 
diffusional flux is proportional to both the concen- 
tration and pressure gradients. By using a simple 
viscous model as a constitutive equation and assum- 
ing that the local deformation is proportional to the 
local penetrant concentration, a third-order nonlin- 
ear partial differential equation is obtained. Because 
of the high nonlinearity as well as the hyperbolic 
nature of this equation, the finite difference method 
developed by Thomas and Windle14 has been shown 
to be ~nstab1e.l~ Hui and Wu l6 obtained an analyt- 
ical solution of the TW model by assuming that the 
swelling interface between the rubbery region and 
the glassy region has a constant velocity and the 
diffusion resistance in the rubbery region is negli- 
gible. Durning17 modified the TW model by using 
the Maxwell model as a stress-strain constitutive 
equation and investigated the differential penetrant 
sorption in a glassy polymer. In this case, the dif- 
ference between the initial penetrant concentration 
and the final concentration is very small so that all 
the model parameters can be assumed to be constant. 
The resultant model consists of two linear differ- 
ential equations; thus, a numerical solution has been 
obtained. Recently, a penetrant diffusion model was 
developed from linear irreversible thermodynamics 
theory and continuum rnechanics.l8 This model ex- 
tends the TW model by providing a vigorous deri- 
vation of the coupling between the polymer me- 
chanical behavior and penetrant diffusion. Integral 
sorption has been studied where the difference be- 
tween the initial concentration and the final con- 
centration is large and the resultant model equations 
are two highly nonlinear differential equations. 

In the present work, a new algorithm based on a 
finite difference method was developed for solving 
the model equations for penetrant diffusion in glassy 
polymers. Numerical simulation of the penetrant 
diffusion was conducted. 

MODEL DEVELOPMENT 

A brief description of the penetrant transport model 
equations for one-dimensional diffusion and defor- 
mation is presented from the more detailed work 
presented elsewhere." 

The penetrant mass balance equations can be ex- 
pressed in terms of penetrant volume fraction if ideal 
mixing is assumed. For one-dimensional diffusion, 
we have 

where v 1  is the penetrant volume fraction, and ul,+, 
the x component of penetrant velocity. 

The penetrant chemical potential in a swollen 
polymer is a function of both penetrant volume 
fraction and osmotically induced pressure or swelling 
pressure. As a result, the penetrant volume diffu- 
sional flux can be obtained from linear irreversible 
thermodynamics. By applying the ideal mixing as- 
sumption, the volume flux with respect to the sta- 
tionary coordinates is 

where P is the swelling pressure, and x the Flory 
interaction parameter. This equation shows that the 
volume flux is proportional to both the concentration 
gradient and the osmotically induced pressure gra- 
dient. 

The swelling pressure in the diffusional flux 
expression depends upon the viscoelastic property 
of the polymer. The relation between the swelling 
pressure and stresses within the polymer can be de- 
rived from the momentum balance equations. The 
momentum balance equations for penetrant and 
polymer are l9 

( 3 )  

In the above equations, Pi is the partial pressure of 
component i; u, the stress tensor of polymer com- 
ponent; bi , the body force; and p: is the exchange 
of linear momentum between components. Accord- 
ing to momentum conservation, 

PIP: + P2Pl  = 0 (5) 

Adding the two momentum balance equations for 
one-dimensional transport and neglecting the in- 
ertial and body force terms yields 

The stress-strain constitutive equation used here 
is the Maxwell model: 
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where By using the chain rule, the derivative of f with 
respect to the undeformed coordinate is 

During penetrant diffusion, the polymer swells. 
The deformation gradient tensor, Fij, is used to relate 
the deformed state to the undeformed state. This 
can be expressed" as 

axi 
axj F.. = - 

where Xi (or X ,  Y ,  and 2 )  and xi (or x ,  y ,  and z )  
are the undeformed and deformed coordinates, re- 
spectively. For one-dimensional deformation, the 
deformation gradient is related to the change of vol- 
ume by 

The local strain is related to the deformation gra- 
dient by 

By substituting eqs. (2)  and ( 6 )  into eq. ( 1 ) , the 
penetrant diffusion equation is obtained 

From eqs. (9)  and ( 15),  we obtain 

Applying the above relation to eq. (12) yields 

The polymer relaxation equation can be expressed 
in terms of the penetrant volume fraction by sub- 
stituting eqs. (8) and ( 11 ) into eq. (7):  

Equation ( 12) is based on deformed coordinates, 
resulting in a moving boundary problem. It can be 
converted into a fixed boundary problem by ex- 
pressing the model equations in terms of undeformed 
coordinates." 

Let us consider a function f, which can be the 
penetrant volume fraction iin the present model. At 
any time t , f is a function of the deformed coordinate 
and time. The deformed coordinate is, in turn, a 
function of the undeformed coordinate and time. 
Thus, 

where 

and 

Consequently, we have two differential equations 
and two variables, v1 and u,,. The initial and bound- 
ary conditions of eqs. (17) and (18) are 

avl ( t ,  x = 0 )  
ax = o  

an,, ( t ,  x = 0 )  
ax = o  

In eq. (21 ) , vl,eq is the penetrant volume fraction 
at the polymer-penetrant interface, which is as- 
sumed to be in equilibrium with the environment. 
According to the Flory-Huggins theory,'l v ~ , ~ ~  can 
be obtained by equating the chemical potential of 
the penetrant in the environment to that in the 
mixture leading to 

In al,o = [In V1,eq + ( 1 - V1,eq) + X( 1 - V1,eq) I 
(25) 
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where al,o is the penetrant activity in the environ- 
ment. 

where 

DIMENSIONLESS FORM OF THE MODEL 
EQUATIONS 

For easy solution and comparison purposes, these 
model equations are written in dimensionless form, 
using the characteristic diffusion time and charac- 
teristic relaxation times that are defined as 

Here, 7relax,0 is the characteristic relaxation time in 
the glassy region without penetrant and 7dif,v,,, is the 
characteristic diffusion time in the region where the 
polymer is at the equilibrium swelling condition. The 
integral sorption Deborah number is defined as 

Note that the integral sorption Deborah number in- 
dicates the ratio of the diffusion rate in the rubbery 
region to the relaxation rate in the glassy region. 
The dimensionless length and time are defined as 

- x  x=- 
LO 

Also, the dimensionless stress and Young's modulus 
are defined as 

- V,E 
RT 

E = -  

Consequently, eq. ( 1 7 )  can be rewritten as 

+ ( 1  - v 1 )  a ax [g(vl)  -g] (33)  

and 

The dimensionless form of eq. (18) is 

The initial and boundary conditions are 

v 1 ( 0  = 0, X )  = 0 

a ( 6  = 0, X )  = 0 

v1 (0, x = 1) = V1,eq 

a ( d , X =  1)  = 0 

av, (0, x = 0)  
ax 

da  (8, x = 0)  
a x  

= o  

= o  

NUMERICAL SOLUTION 

The model equations consist of one nonlinear partial 
differential equation (PDE) and one nonlinear or- 
dinary differential equation (ODE). The two equa- 
tions are coupled. Both finite difference methods and 
finite element methods can be used to solve the 
above equations. 

Finite difference methods use finite difference 
expression to approximate the derivatives in the dif- 
ferential equations, giving rise to simple numerical 
formulation. However, there are two major difficul- 
ties in applying the methods. The first difficulty is 
that the finite difference methods may suffer" from 
the numerical oscillation or numerical diffusion 
(dispersion). This becomes a serious problem in 
solving diffusive-convective PDEs, where the con- 
vective term predominates and a moving front trav- 
els at a constant velocity. The second problem arises 
from nonlinear PDEs that generate a set of nonlin- 
ear finite difference equations at each time step. The 
common methods for solving these nonlinear finite 
difference equations are the quasi-linearization, 
Newton, and predictor-corrector methods. The 
above methods become very inefficient for systems 
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with stiff concentration profiles. This is because a 
large number of grid points is required so that a 
large set of nonlinear finite difference equations is 
required to be solved. 

To deal with the above problems, finite element 
methods have been used. The major advantage of 
these methods is that fewer grid points are required 
because high-order polynomials can be used. In ad- 
dition, moving elements can also be used to follow 
a moving front to further reduce the grid points. 
However, the numerical formulation and computer 
programming are generally quite complicated. 

The two major difficulties associated with finite 
difference methods can also be overcome by im- 
proving conventional finite difference methods. Re- 
cently, it has been shown that the numerical oscil- 
lation and numerical dispersion can be significantly 
reduced if the three-point backward finite differ- 
ences scheme is used to approximate the convective 
term in a convective-predominant PDE.23 It has also 
been demonstrated that for a set of diffusive-con- 
vective PDEs with nonlinear reaction terms a two- 
step expansion technique can be used to linearize 
the nonlinear finite difference equations so that the 
coefficient matrix of the resultant equations can be 
arranged into a tridiagonal form. A special Gauss 
elimination method, called the tridiagonal matrix 
method, can be used to solve these equations with 
minimum computer time and storage space.24 As a 
result, the finite difference method is highly efficient. 

The same methodology is to be applied in the 
present work to solve eqs. (33)  - (42) .  It is instruc- 
tive to notice that there are two major differences 
between eq. (33)  and a diffusive-convective PDE 
with a nonlinear reaction term. The first is the sec- 
ond-order nature of the stress term in eq. (33)  that 
causes less numerical oscillation or numerical dis- 
persion than that of the first-order convective term. 
Thus, the conventional second-order finite differ- 
ence scheme can be directly applied. The second dif- 
ference is that the nonlinearity in eqs. (33) and (36) 
is due to the concentration dependence of diffusion 
coefficient and viscosity, instead of a nonlinear re- 
action term. As a result, an efficient solution tech- 
nique, instead of the two-step expansion technique, 
needs to be developed to solve a set of nonlinear 
finite difference equations. To deal with this prob- 
lem, a tridiagonal iterative method is developed in 
this section. 

The development of the numerical method is di- 
vided into two parts: In the first part, a finite dif- 
ference method is developed for solving eqs. (33 ) - 
(42) with the Young’s modulus, E ,  being infinite. 
In this case, the Maxwell model described by eq. 

( 18) is reduced to the viscous model (the same as 
that used in the TW model). 

The dimensionless form of the above is 

Here, B is defined as 

By substituting eq. (44)  into eq. (33) ,  only one par- 
tial differential equation need be solved 

Here, f ( u1 ) and g ( u1 ) are the same as defined in eqs. 
( 34 ) and ( 35 ) . The function h ( u1 ) is defined as 

(47)  

This equation is very similar to that derived in the 
TW model.16 The initial and boundary conditions 
for eq. (46)  are 

u , ( O  = 0 , X )  = 0 (48) 

(49)  u1 (8, x = 1 ) = ul,eq 

au, (8, x = 0 )  
ax = o  

The accuracy and stability of the numerical method 
is then tested by solving a similar partial differential 
equation with a known analytical solution. 

In the second part, the numerical method devel- 
oped in the first part will be extended to solve eqs. 
(33)  -( 42) .  

Part 1: Finite Difference Scheme for Solving Eqs. 
(46)-( 5 0 )  

The finite difference approximation of the first de- 
rivative on the right side of equation (46)  gives 
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where uj' is the volume fraction of solvent at grid 
point j and time step n; subscript 1 is neglected. The 
finite difference approximation of the second deriv- 
ative is 

Consequently, the implicit finite difference scheme 
of eq. (46) can be written as 

where 

A8( 1 - ~ 1 )  

( A x ) 2  
rl = (54)  

Substituting the above equations into eq. ( 53 ) and 
defining r2 as 

we have 

The above equation is highly nonlinear. It is very 
difficult to obtain a stable solution with the com- 
monly used predictor-corrector iterative methods. 
To cope with this problem, a tridiagonal iterative 
method is developed. 

First, we rearrange eq. (59) into a tridiagonal 
form: 

Then, we use the following iterative method to solve 
the above equation: 

( i )  Set ( ~ ? + ~ ) k , ~  = v?; k is the number of it- 
eration. 

( i i)  Evaluate (f?"),, (g;+l)k, and ( h ) + ' ) k  and 
solve eq. (60) by the tridiagonal matrix 
method to obtain (v?+l)k (24) .  

then 

k = k + l ;  
goto ii ) ; 

then 

v n  = vn+l. 
goto i )  

(iii) If 1 (v)+')~+~ - (v?+l)kl > e, 

(v;+l ) k  = (v?+l ) k + l ,  

If I ( v?+l)k+l - (V?+l)kl < t, 

v:+1 = ( v?+l)k+l 

1 1 '  

The accuracy and the stability of this numerical 
method can be tested by solving the following equa- 
tion: 

3 = d [ f *] + d [ g &  [ h $ ] }  + r ( 8 ,  X )  
a0 ax ax ax 

When f ,  g ,  and h are constants and r (  8, X )  is equal 
to 

r ( 0 ,  X )  = k cos k ( X  + 8) + k3gh  cos k ( X  + 8) 

+ k 2 f  sin k ( X  + 0 )  (62) 

the analytical solution is 

~1(8, X )  = sin k ( X  + 8) (63) 

The analytical solution can be compared with the 
numerical solution obtained with the finite differ- 
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ence method. The initial and boundary conditions 
are 

ul(O,  X )  = sin kX 

u1 (8, 0 )  = sin k8 

u1 (8, 27r) = sin k8 

(64)  

(65)  

(66)  

If k is equal to 4, the results are shown in Figure 1. 
It is seen that the numerical solution is very close 
to the analytical solution. The effects of spatial and 
temporal step sizes on accuracy of the solution as 
well as on the computer time are shown in Table I. 
It is seen that as the number of grids increases the 
accuracy of the solution increases. Because the tem- 
poral derivative is approximated by a first-order dif- 
ference scheme and the spatial derivatives are ap- 
proximated by a second-order difference scheme, a 
smaller temporal step size is needed. The temporal 
step size can be further reduced if a higher-order 
difference scheme such as the three-point backward 
scheme is used.23 Little CPU time is needed for all 
these cases. This demonstrates the high efficiency 
of the numerical method. 

The solutions obtained from the above numerical 
procedure give the penetrant volume fraction based 
on the undeformed spatial coordinate. To describe 
the dynamic swelling or deformation of the polymer 
matrix, it is necessary to express the penetrant vol- 

1 

I I I I 
0.0 0.2 0.5 0.8 1 .o 

Xl2n 
Figure 1 Comparison between the analytical and nu- 
merical solutions of eq. (61) at  8 = T. The continuous 
curve is the analytical solution that is v1 = sin 4 ( X  + 8 ) .  
A8 = 2 T /  1000; AX = 2a/80. 

Table I Effect of Grid Size on Accuracy and 
CPU Time of Numerical Solution 

No. Average" CPU 
Temporal No. Spatial Relative Timeb 

Grid Points Grid Points Error ( S )  

200 32 5.43% 0.9 
1000 32 4.68% 4.4 
1000 80 1.54% 10.7 

a The average relative error is calculated by rave = (1/N) 2y 
[ ( u ; . ~ , , ~  - ~ i . ~ ~ d / ~ ; ~ ~ ~ l ,  where the points where ki,- is zero are not 
included. 

Sun Sparc station 2 was used. 

ume fraction based on the deformed coordinate. This 
can be done by integrating eq. (9):  

After the concentration profiles are obtained, the 
stress profiles can be calculated from eq. (44 ) .  The 
fractional mass uptake is determined by the follow- 
ing integration: 

- -- 

Part 2: Finite Difference Scheme for Solving 
E ~ s .  (33)- (42)  

When the Maxwell model is used, a system of one 
partial differential equation and one ordinary dif- 
ferential equation need to be solved. Nevertheless, 
a similar numerical procedure can be used. 

First, the implicit finite difference scheme of eq. 
(33) is written as 

where 

AO(l - u l )  

rl = ( A j 7 ) 2  
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The finite difference scheme of eq. (36) can be ex- 
pressed as 

Then, eq. (73) is rearranged into 

where 

DeE 
( 1  - u?+')'[De + A0 exp(a,v,Y1)] h?+' = (76) 

Substituting eq. (74) into eq. (69) yields 

This equation is similar to eq. (59). Thus, the tri- 
diagonal iterative method developed before can be 
employed. By rearranging eq. (77) into a tridiagonal 
form, we have 

Then, the same iterative procedure as that used in 
solving eq. (60) can be applied to solve eq. ( 78). 

RESULTS AND DISCUSSION 
To show the capabilities of the new algorithm, we 
present here a number of numerical simulations of 
importance to the broad transport problem. There 
are six model parameters in the dimensionless model 
equations. A typical set of model parameters is listed 
in Table I. In this table, the Flory interaction pa- 
rameter, x, is assumed to be 0.9, corresponding to 
diffusion of good swelling agents that can substan- 
tially swell a polymer but cannot dissolve it, The 
resultant penetrant equilibrium volume fraction is 
ul,eq = 0.383, which is obtained from eq. (25) .  The 
penetrant activity in the bulk penetrant phase is al,o 
= 1.0 for a pure penetrant. The exponential factor 
of the diffusion coefficient, a d ,  is taken to be 20 so 
that the diffusion coefficient in the rubbery region 
is about three orders of magnitude larger than that 
in the glassy region. The exponential factor of vis- 
cosity, a,, is taken to be 50 so that the viscosity 
changes from 4 X 10l2 to about 1.5 X lo7  N s m-2. 
The value of De and E are calculated from eqs. (28)  
and ( 32 ) . The parameters needed are also listed in 
Table 11. 

Simulation results using these parameters are 
shown in Figures 2-5, exhibiting typical Case I1 dif- 
fusional behavior. In figure 2, the normalized pen- 
etrant volume fraction is plotted against the nor- 
malized position. The center of the swelling slab is 
at x / L o  = 0. The penetrant-polymer boundary is 
initially at x/Lo = 1. It is seen that the concentration 
changes dramatically at the interface between the 
rubbery region and glassy region, indicating that the 
relaxation of the polymer matrix is the rate-deter- 
mining step of the whole process. In the rubbery 
region, the concentration profiles are quite flat, 
showing the fast diffusion rate. 

It is interesting to note that the concentration 

Table I1 
Numerical Simulation 

A Set of Model Parameters for 

0.90 
1.0 

20 
50 
4.54 

12.11 
4.0 X m2 sK1 
4.0 X lo'* N s rn-' 
3.0 X 10' N m-' 
5.9 x m 

297 K 
4.04 X m3 mol-' 
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0.6 

0.4 

0.2 

1.2------l 

- 

- 

- 

I 

O.OO.0 / 25.0 50.0 75.0 1( 

Normalized Time, 8 

1.0 

Normalized Position, x/Lo 

Figure 2 Normalized penetrant volume fraction as a 
function of normalized position. The model parameters 
are listed in Table 11. The position of x / L o  = 0 is the 
center of the slab and the time increment starting from 
the first curve on the right is A8 = 7.2. 

Figure 4 Internal stress as a function of normalized 
position. The model parameters are listed in Table 11. The 
position of x /Lo  = 0 is the center of the slab and the time 
increment starting from the first curve on the right is A8 
= 7.2. 

fusion front moves inward and the rubbery region 
swells outward, the diffusion resistance increases. 
Consequently, the concentration profiles become 
smoother. 

Figure 3 shows the penetrant volume fraction 
profiles plotted against the undeformed normalized 

profiles do not seem continuous. This is because the 
diffusion rate is much greater than the relaxation 
rate so that the glassy core behaves like an imper- 
vious wall, resulting in a concave curve. As the dif- 

. "  
10.0 

h 

a" 
E 
ox 
5 5.c 

p: 

€ 
z" 

v) 

.ra 

0.C 111 0.5 I I 
ti- Normalized Position, X/Lo 

Figure 3 Normalized penetrant volume fraction as a 
function of the undeformed normalized position. The 
model parameters are listed in Table 11. The position of 
X / L o  = 0 is the center of the slab and the time increment 
starting from the first curve on the right is A8 = 7.2. 

Normalized Position, x&) 

Figure 5 Fractional mass uptake as a function of nor- 
malized time. The model parameters are listed in Table 
11. 
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position. These results are the solutions of eq. ( 33 ) - 
( 42 ) . The profiles in Figure 2 were obtained by using 
eq. (67) to transform the volume fractions based on 
the undeformed coordinates into those based on the 
deformed coordinates. 

The fractional mass uptake curve is plotted in 
Figure 4, showing a linear relation between the mass 
uptake and time, which is a major indication of Case 
I1 diffusion. The Deborah number in this case is 
about 4.54, indicating the relaxation time is much 
longer than the diffusion time. It is noted that an 
induction time exists before the interface forms and 
moves into the bulk of the polymer sample. 

The stress profiles are shown in Figure 5. The 
internal stress level is about 10 MPa. This value is 
close to the range for crazing. It is seen that the 
maximum stress appears near the interface. In the 
swollen region, the stress is negligible. 

Because of the very stiff concentration profiles, 
a large number of grid points is required for finite 
difference methods. In the above stimulation, 100 
spatial grid points and 2000 temporal grids points 
are used. The Sun Sparc station I1 was used and the 
CPU time was 22.3 s. This demonstrates the high 
efficiency of the numerical method. 

In eq. (28), the diffusion Deborah number is de- 
fined as a ratio of the polymer relaxation time to 

1.0 

Square Root of Normalized Time, 

Figure 7 Fractional mass uptake as a function of the 
square root of normalized time. The model parameters are 
listed in Table I1 except that qo = 10l1 N s m-' and De 
= 0.11. 

the penetrant diffusion time. If the relaxation time 
is reduced, the Deborah number will decrease. As a 
result, a transition from the Case I1 diffusion to the 
Fickian diffusion will be observed; this is shown in 
Figures 6 and 7. If all the parameters in Table I1 
remain unchanged except that qo is decreased from 
4.0 X 10l2 to 10" N s mP2, the Deborah number is 
decreased from 4.54 to 0.11. As a result, the relax- 
ation rate becomes very fast and the diffusion rate 
becomes the rate-limiting step. As shown in Figure 
6, the concentration profiles become very smooth. 
Also, the mass uptake is proportional to square root 
of time at the initial sorption stage, as shown in 
Figure 7. These are two typical features of Fickian 
diffusion. Further discussion of the numerical results 
as well as comparison with selected data are pre- 
sented elsewhere.25 

CONCLUSIONS 

Normalized Position, x/Lo 

Figure 6 Normalized penetrant volume fraction as a 
function of normalized position. The model parameters 
are listed in Table I1 except that go = 10" N s m-' and 
De = 0.11. The position of n/Lo = 0 is the center of the 
slab and the time increment from the first curve on the 
right is A8 = 6.0. 

An implicit finite difference method was developed 
to solve the model equations for one-dimensional 
penetrant diffusion in glassy polymers, which consist 
of one nonlinear partial differential equation and 
one nonlinear ordinary differential equation. The 
unique feature of this method is the development of 
a tridiagonal iterative method to solve the finite dif- 
ference equations obtained from the finite difference 
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approximation of the differential equations. As a re- 
sult, only a system of linear equations is solved at 
each iteration so that it allows a large number of 
grid points. In addition, good convergence is ob- 
tained when the finite difference equations are 
solved at  each time step, giving rise to a stable so- 
lution. 

Numerical simulation of penetrant diffusion in 
glassy polymers was performed. The simulation re- 
sults show the typical Case I1 diffusional behavior 
as well as the transition from Case I1 to Fickian 
diffusion. The integral sorption Deborah number 
was shown to be a major parameter affecting pen- 
etrant diffusional behavior. 

The authors wish to thank Professor E. N. Houstis of the 
Computer Science Department of Purdue University for 
his comments on seeking an analytical solution to testing 
the numerical method. This work was supported in part 
by a grant from the National Science Foundation. 

NOTATION 

exponential factor for diffusion coefficient 
exponential factor for viscosity 
penetrant activity in environment 
body force of component i 
penetrant diffusion coefficient 
penetrant diffusion coefficient at zero pen- 

integral sorption Deborah number 
Young’s modulus 
dimensionless Young’s modulus 
component of deformation gradient tensor 
half-thickness of a polymer film at  time t 
half-thickness of a polymer film at time t 

total mass uptake at  time t 
total mass uptake at equilibrium conditions 
swelling pressure or total pressure 
partial pressure of penetrant 
partial pressure of polymer 
momentum exchange between component 

i and other components 
time 
temperature 
velocity vector of component i 
deformed total volume 
undeformed total volume 
molar volume of component i 
component of position vector in deformed 

coordinates, whose components are x , y, 
2, or x1, x2,  x3 

etrant concentration 

= o  

Component of position vector in unde- 
formed coordinates, whose components 
are X ,  Y ,  2, or X 1 ,  X 2 ,  X3  

dimensionless length based on undeformed 
coordinates 

Small strain component 
viscosity of the dashpot in the Maxwell 

model 
viscosity of the dashpot in the Maxwell 

model at zero penetrant concentration 
dimensionless time 
mass of component i per unit volume 
stress tensor on polymer 
stress components of stress tensor of poly- 

dimensionless normal stress in x direction 
characteristic diffusion time defined at 

equilibrium swelling conditions 
characteristic relaxation time defined zero 

penetrant volume fraction 
volume fraction of component i 
volume fraction of component 1 at equilib- 

Flory polymer-penetrant interaction pa- 

mer component 

rium conditions 

rameter 
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